TrkA-immunoreactive profiles in the central nervous system: colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin.
نویسندگان
چکیده
The present investigation used an antibody directed against the extracellular domain of the signal transducing nerve growth factor receptor, trkA, to reveal immunoreactive perikarya or fibers within the olfactory bulb and tubercle, cingulate cortex, nucleus accumbens, striatum, endopiriform nucleus, septal/diagonal band complex, nucleus basalis, hippocampal complex, thalamic paraventricular and reuniens nuclei, periventricular hypothalamus, interpeduncular nucleus, mesencephalic nucleus of the fifth nerve, dorsal nucleus of the lateral lemniscus, prepositus hypoglossal nucleus, ventral cochlear nucleus, ventral lateral tegmentum, medial vestibular nucleus, spinal trigeminal nucleus oralis, nucleus of the solitary tract, raphe nuclei, and spinal cord. Colocalization experiments revealed that virtually all striatal trkA-immunoreactive neurons (> 99%) coexpressed choline acetyltransferase (ChAT) but not p75 nerve growth factor receptor (NGFR). Within the septal/diagonal band complex virtually all trkA neurons (> 95%) coexpressed both ChAT and p75 NGFR. More caudally, dual stained sections revealed numerous trkA/ChAT (> 80%) and trkA/p75 NGFR (> 95%) immunoreactive neurons within the nucleus basalis. In the brainstem, raphe serotonergic neurons (45%) coexpressed trkA. Sections stained with a pan-trk antibody that recognizes primarily trkA, as well as trkB and trkC, labeled neurons within all of these regions as well as within the hypothalamic arcuate, supramammilary, and supraoptic nuclei, hippocampus, inferior and superior colliculus, substantia nigra, ventral tegmental area of T'sai, and cerebellular Purkinje cells. Virtually all of these other regions with the exception of the cerebellum also expressed pan-trk immunoreactivity in the monkey. The widespread expression of trkA throughout the central neural axis suggests that this receptor may play a role in signal transduction mechanisms linked to NGF-related substances in cholinergic basal forebrain and noncholinergic systems. These findings suggest that pharmacological use of ligands for trkA could have beneficial effects on the multiple neuronal systems that are affected in such disorders as Alzheimer's disease.
منابع مشابه
Nerve growth factor receptor is associated with cholinergic neurons of the basal forebrain but not the pontomesencephalon.
Sequential immunohistochemical demonstration of nerve growth factor receptor and cholinergic acetyltransferase on the same tissue section in the rat revealed that approximately 92% of all cholinergic neurons in the basal forebrain possessed that receptor. Only 0.9% of the neurons demonstrating nerve growth factor receptor in the basal nuclear complex lacked the cholinergic synthetic enzyme, and...
متن کاملAbsence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation.
Emerging evidence suggests that the p75 neurotrophin receptor (p75NTR) mediates cell death; however, it is not known whether p75NTR negatively regulates other neuronal phenotypes. We found that mice null for p75NTR displayed highly significant increases in the size of basal forebrain cholinergic neurons, including those that are TrkA-positive. Cholinergic hippocampal target innervation also was...
متن کاملp75 and TrkA signaling regulates sympathetic neuronal firing patterns via differential modulation of voltage-gated currents.
Neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) act through the tropomyosin-related receptor tyrosine kinases (Trk) and the pan-neurotrophin receptor (p75) to regulate complex developmental and functional properties of neurons. While NGF activates both receptor types in sympathetic neurons, differential signaling through TrkA and p75 can result in wi...
متن کاملNeurotrophin-3 promotes the cholinergic differentiation of sympathetic neurons.
Neurotrophins influence the epigenetic shaping of the vertebrate nervous system by regulating neuronal numbers during development and synaptic plasticity. Here we attempt to determine whether these growth factors can also regulate neurotransmitter plasticity. As a model system we used the selection between noradrenergic and cholinergic neurotransmission by paravertebral sympathetic neurons. Dev...
متن کاملInduction of Bone Marrow Stromal Cells into Cholinergic-Like Cells by Nerve Growth Factor
Background: Bone marrow stromal cells (BMSC) are used as a source for cell therapy in different model for neurological disorder such as stroke and spinal cord injury. However, the transdifferentiation of BMSC into cholinergic phenotype requires more investigation. Methods: BMSC were isolated from adult rats, pre-induced with β-mercaptoethanol (BME) and followed by nerve growth factor (NGF) indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 350 4 شماره
صفحات -
تاریخ انتشار 1994